A Convenient Synthesis of Polyfunctionally Substituted
(Acradin-9-yl)imino-1,3-thiazolidin-4-ones and Spiro[9,10-dihydroacridine-9,4'-thiazolidines]

P. KRISTIAN, I. CHOMČA, J. BERNÁT, and J. IMRICH

Department of Organic Chemistry, Faculty of Natural Sciences,
P. J. Šafárik University, SK-041 67 Košice

Received 9 April 1998

1-(Acradin-9-yl)-3-disubstituted thioureas react with methyl bromoacetate and bromoacetoni-
trile, respectively, depending on a substituent bulkiness, to polyfunctionally substituted (acridin-
9-yl)imino-1,3-thiazolidin-4-ones and spiro[9,10-dihydroacridine-9,4'-thiazolidines]. Reactions repre-
sent the simple and convenient way to synthesize the title compounds with possible antibacterial
activity. Based on their spectral data, the structure of products is discussed.

A great variety of compounds bearing the NCS
fragment undergo heterocyclization upon cycloco-
densation with α-halocarbonyl compounds [1, 2]. We
have successfully used this convenient approach for the
synthesis of hitherto unreported polyfunctionally sub-
tituted thiazolines and spiro acridines of biological
interest [3–5]. As synthons for these reactions salts
of acridinylthiocarbonimides I [3], acridinyldithio-
carbamates IIa [4], and acridinylthioureas IIb [5] were
utilized together with methyl bromoacetate and bro-
moacetonitrile in the role of α-halocarbonyl reagent.
The reaction products usually were polyfunctionally
substituted spiro[9,10-dihydroacridine-9,4'-thiazolidi-
es] III, only O-alkyl-N-substituted thiocarbonimi-
dates I afforded with bromoacetylbromide corre-
sponding 1,3-thiazolidine-2,4-diones IV, too [6].

Recently, 2-(benzoyl-arsulfonyl-methylene)-3-
phenyl-1,3-thiazolidin-4-ones V were synthesized by
the treatment with ethyl bromoacetate of nonisolable
potassium sulfide salts obtained via nucleophilic addi-
tion of acidic arylsulfonylacetylenes to phenyl
isothiocyanates [2]. Also some new quinazolinyli-
thiazolines VI showed promising antibacterial activity
when compared with streptomycin as a standard [7].

The high antibacterial activity of acridines [8, 9]
prompted us to introduce the acridine moiety into
the thiazolidinone and thiazolidine rings. As suitable
intermediates for this purpose we used 1-(acridin-
9-yl)-3-disubstituted thioureas VIIa–VIIe [10] con-
taining primary, secondary, and tertiary alkyl rest.
The compounds VIIa–VIIe reacted with methyl bro-
moacetate or bromoacetonitrile to give nonisolable
isothioureas VIII (Scheme 1). The presence of hy-
drogen atom attached to N-3 of isothiourea VIII al-
low its subsequent cyclocondensation to 2-(acridin-
9-yl)imino-1,3-thiazolidin-4-ones IXa–IXc. Such a re-
action is not possible with thioureas formed from
secondary amines [5]. Depending on the bulkiness
of alkyl substituent and α-halocarbonyl reagent,
spiro[9,10-dihydroacridine-9,4'-thiazolidines] XId, XIe
and XIIa–XIIe were also obtained.

We found out that thioureas VIIa–VIIe afforded
with methyl bromoacetate 3-substituted-2-(acridin-
9-yl)imino-1,3-thiazolidin-4-ones IXa–IXc, whereas
thioureas VIIId, VIIe with N-3 bound to secondary
or tertiary carbon, cyclized to 2'-substituted imino-5'-methoxycarbonylspiro[9,10-dihydroacridine-9,4'-thia-
zolidines] XId and XIe. The rise of spiro compounds
XId and XIe is preferred in this case probably due to
the steric hindrance of bulky substituent R (cyco-
hexyl, tert-butyl) which prevents a nucleophilic attack
of N-3 to carbonyl group necessary for the thiazolidi-
one IX formation (Scheme 1).

Using the second reagent, bromoacetonitrile, iso-
thioureas VIII arised in situ from thioureas VIIa–
VIIe cyclized exclusively to 2'-substituted imino-5'
-cyanospiro[9,10-dihydroacridine-9,4'-thiazolidines]
XIIa–XIIe. Because of increased acidity of SCH2—
CN protons the cyclization reaction is facilitated and
we did not observe the formation of incidental 1,3-
-thiazolidin-4-imines X which might be expected as
products of addition of NH–R fragment to cyano
group.

Different structures of thiazolidinones IX and spiro
compounds XI, XII were confirmed by spectral meth-
ods. Whereas in IR spectra of thiazolidinones the
C=O band at \(\tilde{\nu} = 1723 \) cm\(^{-1}\) and band of exocyclic
C=N group at \(\tilde{\nu} = 1630 \) cm\(^{-1}\) are observed, in spiro
compounds XId, XIe ester C=O band at \(\tilde{\nu} = 1735 \)
cm\(^{-1}\) and endocyclic C=N band at 1615 cm\(^{-1}\) are
found. In spiro compounds XIIa–XIIe the band at
2210 cm\(^{-1}\) corresponds to a cyano group.
More pronounced differences were observed in 1H NMR spectra, where thiazolidinones IX possess a typical singlet of CH_2 group at $\delta = 3.77-4.15$, replaced in spiro compounds XI, XII by H-5$'$ singlet in the range $\delta = 4.11-4.25$. Moreover, signals of NH ($\delta = 6.47-6.51$) and OCH$_3$ protons ($\delta = 3.14$, in XI) occur. Other spectral data including mass and 13C NMR spectra of selected derivatives support proposed structures. A nonequivalence of protons and carbons of acridinyl side rings in high-resolution NMR spectra of XIe, $XIIe$ confirms the presence of chiral centre C-5$'$ in a rigid structure of spiro compound.
EXPERIMENTAL

NMR spectra were recorded on a Tesla BS 587 (80 MHz), Jeol NMR-EX 270 (270.17 MHz (1H), 67.94 MHz (13C)), compounds IXb, IXc, and Varian VXR-300 (300 MHz (1H), 75 MHz (13C)), compounds XIf, XIIe spectrometers. The chemical shifts are given in δ scale using tetramethylsilane as an internal standard. 13C signals were assigned using DEPT spectra. Mass spectra were measured on a MAT 8500 (EI, 70 eV) spectrometer and microanalysis was done on a Perkin-Elmer CHN 2400 analyzer. IR spectra were obtained on a Specord 75 IR spectrophotometer. The melting points are uncorrected.

Starting thioureas VIIa, VIIb, VIIId, and VIIe were prepared by reaction of 9-isothiocyanatoacridine [11] with corresponding amines in chloroform [10]. Analogously was prepared 1-(acridin-9-yl)-3-furfurylthiourea (VIIe): yield 95%, m.p. = 168—170°C. For C19H15N3OS (M = 333.41) w1(calc.): 68.44 % C, 4.53 % H, 12.60 % N; w1(found): 68.07 % C, 4.43 % H, 12.49 % N. IR spectrum (KBr), ν/cm\(^{-1}\): 3210, 1620, 1560. 1H NMR spectrum (CDCl3): δ: 11.53 (s, 1H, NH), 6.91—8.19 (m, 10H, H1-cyclic, H-5furyl, NH), 6.30—6.52 (m, 2H, H-3furyl, H-4), 4.84 (d, J = 6.1 Hz, 2H, CH2).

3-Substituted 2-(Acridin-9-yl)imino-1,3-thiazolidin-4-ones IXa—IXc and 2,5′-Disubstituted Spiro[9,10-dihydroacridine-9,4′-thiazolidines] XIf, XIf

To a suspension of thiourea VII (1 mmol) in dichloromethane (30 cm\(^3\)) methyl bromoacetate (0.2 g; 1.3 mmol) or bromoacetonitrile (0.13 g; 1.1 mmol) was added slowly with stirring which continued until thiourea disappeared (ca. 2 h, detected by TLC chromatography, eluent benzene—acetone, ϕx = 5:2). After evaporation of solvent a melaninic solution (20 cm\(^3\)) of sodium methoxide (0.13 g; 1.31 mmol) was added and stirring continued for 25 min. Reaction mixture was then poured into water (50 cm\(^3\)), a precipitate formed was filtered off, dried and recrystallized from the mixture chloroform—acyclohexane.

IXa: Yield 70%, m.p. = 214—216°C. For C23H17N3O3S (M = 383.474) w1(calc.): 72.04 % C, 4.47 % H, 10.96 % N; w1(found): 71.87 % C, 4.41 % H, 10.79 % N. IR spectrum (KBr), ν/cm\(^{-1}\): 1720, 1630. 1H NMR spectrum (CDCl3), δ: 7.41—8.91 (m, 13H, Haryl), 5.32 (s, 2H, CH2benzyl), 4.15 (s, 2H, CH2S).

IXb: Yield 78%, m.p. = 164—167°C. For C19H17N3O3S (M = 335.43) w1(calc.): 68.03 % C, 5.11 % H, 12.53 % N; w1(found): 67.87 % C, 5.01 % H, 12.43 % N. IR spectrum (KBr), ν/cm\(^{-1}\): 1723, 1633. 1H NMR spectrum (CDCl3), δ: 8.21 (d, J = 8.9 Hz, 2H, H-4, H-5), 7.87 (d, J = 8.6 Hz, 2H, H-1, H-8), 7.76 (dd, J = 8.9, 6.5 Hz, 2H, H-2, H-7), 7.47 (dd, J = 8.6, 6.5 Hz, 2H, H-2, H-7), 5.11 (m, J = 6.9 Hz, 1H, CHN), 3.77 (s, 2H, CH2S), 1.76 (d, J = 6.9 Hz, 6H, 2CH3). 13C NMR spectrum (CDCl3), δ: 172.5 (C=O), 157.6 (C=N), 151.6 (C-4a, C-10a), 150.6 (C-9), 131.5, 130.8, 126.2, 124.7 (CH-1 to CH-8), 118.7 (C-8a, C-9a), 49.5 (CH), 34.1 (CH2), 20.1 (2CH3). Mass spectrum, m/z (I (%)): 335 (100) [M+], 293 (57) [M+ 2—C6H6], 219 (49) [Acr—N=C—NH2].

IXc: Yield 85%, m.p. = 157—159°C. For C21H15N3O2S (M = 373.44) w1(calc.): 67.54 % C, 4.05 % H, 11.25 % N; w1(found): 67.27 % C, 4.01 % H, 11.19 % N. IR spectrum (KBr), ν/cm\(^{-1}\): 1723, 1630. 1H NMR spectrum (CDCl3), δ: 8.21 (d, J = 8.8, 1.1, 0.7 Hz, 2H, H-4, H-5), 7.82 (ddd, J = 8.4, 1.5, 0.7 Hz, 2H, H-1, H-8), 7.76 (ddd, J = 8.8, 6.5, 1.5 Hz, 2H, H-3, H-6), 7.44 (ddd, J = 8.4, 6.5, 0.7 Hz, 2H, H-2, H-7), 7.51 (dd, J = 1.7, 0.9 Hz, 1H, H-5′), 6.56 (dd, J = 3.3, 0.9 Hz, 1H, H-3′), 6.45 (dd, J = 3.3, 1.7 Hz, 1H, H-4′), 5.30 (s, 2H, CH2N), 3.88 (s, 2H, CH2S). 13C NMR spectrum (CDCl3), δ: 170.8 (C=O), 156.0 (C=N), 150.2 (C-2′), 149.4 (C-4a, C-10a), 148.5 (C-9), 142.7 (C-5′), 130.4, 129.5, 125.1, 123.7 (CH1 to CH-10), 117.6 (C-8a, C-9a), 110.7, 110.1 (C-3′, C-4′), 39.3 (CH2N), 33.3 (CH2S).

XIf: Yield 75%, m.p. = 193—196°C. For C23H23N3O3S (M = 381.50) w1(calc.): 66.12 % C, 6.08 % H, 10.31 % N; w1(found): 61.26 % C, 6.11 % H, 10.21 % N. IR spectrum (KBr), ν/cm\(^{-1}\): 3440, 1735. 1H NMR spectrum (CDCl3), δ: 6.70—7.61 (m, 8H, Haryl), 6.48 (s, 1H, NH-10), 4.21 (s, 1H, CH-5′), 3.65—3.95 (m, 1H, cyclohexyl), 3.14 (s, 3H, OCH3), 1.21—2.04 (m, 10H, cyclohexyl).

XIf: Yield 75%, m.p. = 131—134°C. For C23H23N3O3S (M = 382.49) w1(calc.): 72.23 % C, 4.74 % H, 14.65 % N; w1(found): 72.00 % C, 4.71 % H, 14.59 % N. IR spectrum (KBr), ν/cm\(^{-1}\): 3436, 2210, 1615. 1H NMR spectrum (CDCl3), δ: 6.78—7.75 (m, 13H, Haryl), 6.50 (s, 1H, NH-10), 4.75 (s, 2H, CH2benzyl), 4.25 (s, 1H, CH-5′).
Acknowledgements. This study was supported by the Grant Agency for Science of the Slovak Ministry of Education (Reg. No. 96/5195/553). The authors thank to Dr. T. Liptaj and Dr. N. PrónayovÁ from the Faculty of Chemical Technology, Slovak University of Technology, Bratislava for the measurement of NMR spectra of compounds XIc and XIIe.

REFERENCES