Study of the Catalytic Activity of Calcined Ni/Mg/Al (Mn) Hydrotalcites for N₂O Decomposition*

aL. OBALOVÁ, bM. VALÁŠKOVÁ, cF. KOVANDA, bZ. LACNÝ, and aK. KOLINOVÁ

aDepartment of Physical Chemistry and Theory of Technological Processes,
Technical University of Ostrava, CZ-708 33 Ostrava
e-mail: lucie.obalova@vsb.cz

bInstitute of Materials Chemistry, Technical University of Ostrava, CZ-708 33 Ostrava
e-mail: marta.valaskova@vsb.cz

cDepartment of Solid State Chemistry, Institute of Chemical Technology,
CZ-166 28 Prague
e-mail: Frantisek.Kovanda@vscht.cz

Received 1 April 2003

Mixed oxide-based catalysts prepared by thermal decomposition of Ni—(Mg)—M(III) hydrotalcite-like compounds (M(III) = Al, Mn) were used in catalytic decomposition of nitrous oxide in order to describe the catalytic activity of multicomponent catalysts and to study the effect of Mg²⁺ presence in the catalysts structure. Although the catalytic activity of prepared Ni—Al and Mg—Mn calcined hydrotalcites was high, the simultaneous presence of both transition metal cations Ni²⁺ and Mn³⁺ in the catalyst structure caused a decrease of N₂O conversion and specific surface area. The N₂O conversions decrease with increasing content of Mg in the Ni—Al system and increase in the Ni—Mn system. The rise of Mg content in the catalysts resulted in larger surface area and higher thermal stability of both Ni—(Mg)—Al and Ni—(Mg)—Mn samples. The prepared hydrotalcites as well as calcined products were characterized by the thermal analysis (TG/DTA), powder X-ray diffraction (XRD), and BET surface area measurements.

Nitrous oxide, N₂O, has been considered to be a relatively harmless species for a long time. During the last decade, a growing concern can be noticed since nitrous oxide has been identified as a contributor to the destruction of ozone in the stratosphere and recognized as a relatively strong greenhouse gas. An estimation of nitrous oxide emissions from anthropogenic sources is reported in the range of 1.2 × 10⁶ t year⁻¹ [1, 2]. Not all sources are identified yet and the given values may change in the future. The known primary sources of anthropogenic N₂O emissions are, in decreasing order, cultivated soils, chemical industry, stationary and mobile combustion. However, the only emissions that can be reduced in the short term are those associated with combustion (esp. fluidized bed combustion) and chemical processes (e.g. adipic and nitric acid production plants, glyoxal and caprolactam productions). A considerable contribution of car engines to the N₂O emissions cannot be neglected and methods for its reducing were also studied [3].

Catalytic decomposition offers an attractive end-of-pipe solution for the abatement of N₂O in waste gases from combustion and chemical industry. The N₂O decomposition was widely studied because this simple reaction was often chosen as a test reaction in developing a correlation between structural and catalytic properties. The state of art in catalytic decomposition of N₂O is well documented in the literature [4—6].

Mixed oxide-based catalysts prepared by thermal treatment of hydrotalcite-like compounds (HTL) have been reported as very active for N₂O decomposition [7—9]. Hydrotalcite-like compounds, a class of layered double hydroxides, consist of positively charged metal hydroxide layers separated from each other by anions and water molecules. Their chemical composition can be represented by the general formula [M(II)₁₋ₓM(III)ₓ(OH)₂]²⁺[Aⁿ⁻ₓ/zH₂O]²⁻, where M(II) and M(III) are divalent and trivalent metal cations, Aⁿ⁻ is an n-valent anion, and x has usually values approximately between 0.25 and 0.33 [10]. What makes hydrotalcite a general precur-

*Presented at the 30th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 26—30 May 2003.
sor is i) its ability to accommodate a large number of bivalent and trivalent cations, ii) the interdispersion of cations on an atomic scale, leading to catalysts with structural homogeneity and without chemical segregation, and iii) the formation of thermostable materials with large surface area upon decomposition.

As reported recently, the combination of two active transition metals Co and Cu present in hydrotalcite structure caused after calcination a spinel formation and increasing catalytic activity in N\textsubscript{2}O decomposition [11]. Further, it was published that the presence of Mg in the catalyst prepared by thermal decomposition of cobalt-containing hydrotalcite-like compounds considerably influenced the catalytic behaviour [12]. Therefore, the performance of a new system comprising two transition metals, Ni and Mn, combined with Mg present in hydrotalcite structure was studied in the N\textsubscript{2}O catalytic decomposition. Nickel was selected as the calcined Ni—Al hydrotalcite was reported to be active catalyst for N\textsubscript{2}O decomposition [8, 13]. The catalytic activity for N\textsubscript{2}O decomposition of Mn-containing mixed oxides was also reported [14]. The activity of Mn-systems strongly depends on the oxidation state of manganese; the most active oxidation state of Mn ions dispersed in MgO matrix was Mn3+ (compared to Mn2+ and Mn4+) [15]. The optimum oxidation state seems to be Mn3+ also for the manganese oxides and the activity per unit surface area increases according to the oxidation state of Mn: MnO < MnO\textsubscript{2} < Mn\textsubscript{3}O\textsubscript{4} < Mn\textsubscript{2}O\textsubscript{3} [16].

The aim of this study was the development of active and stable, under industrial conditions, multicomponent catalyst for N\textsubscript{2}O decomposition, taking advantage of properties of hydrotalcite structure able to accommodate various bivalent and trivalent cations, e.g., Ni—(Mg)—Al and Ni—(Mg)—Mn hydrotalcite-based catalysts.

EXPERIMENTAL

Preparation and Characterization of Catalysts

Samples of Ni—Mg—M (M = Al, Mn) hydrotalcite-like compounds with n(Ni):n(Mg):n(M) ratios of 0:4:2, 4:0:2, 3:1:2, and 2:2:2 (denominated as Mg\textsubscript{4}M\textsubscript{2}-HTL, Ni\textsubscript{4}M\textsubscript{2}-HTL, Ni\textsubscript{3}M\textsubscript{g}M\textsubscript{2}-HTL, and Ni\textsubscript{2}Mg\textsubscript{2}M\textsubscript{2}-HTL, respectively) were prepared by the standard coprecipitation method [17]. 450 cm3 of aqueous solution containing appropriate amounts of Ni(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O, Mg(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O, and Al(NO\textsubscript{3})\textsubscript{3}·9H\textsubscript{2}O or Mn(NO\textsubscript{3})\textsubscript{2}·4H\textsubscript{2}O with n(M(II))/n(M(III)) mole ratio of 2 and of total metal ion concentration of 1.0 mol dm-3 was added dropwise with vigorous stirring into 200 cm3 of 0.5 M Na\textsubscript{2}CO\textsubscript{3} solution. The addition took about 1 h. During the synthesis, the temperature was maintained at 25°C and pH at about 10 by a simultaneous addition of a 3 M NaOH solution. Then, the resulting suspension was stirred at 25°C for additional 18 h. The product was filtered off and washed several times with distilled water and dried overnight at 60°C in air. The dried hydrotalcite-like precursors were formed into extrudates (diameter 3 mm), dried at 130°C for 4 h and then calcined for 4 h in air at 450°C. Calcined extrudates were crushed and fraction of particle size 0.100—0.125 mm was used in catalytic measurements. The catalysts prepared from Ni—Mg—Al hydrotalcite-like compounds were signed as Mg\textsubscript{4}Al\textsubscript{2}, Ni\textsubscript{4}Al\textsubscript{2}, Ni\textsubscript{3}MgAl\textsubscript{2}, and Ni\textsubscript{2}Mg\textsubscript{2}Al\textsubscript{2}, respectively and the catalysts prepared from Ni—Mg—Mn hydrotalcite-like compounds are signed as Ni\textsubscript{4}Mn\textsubscript{2}, Mg\textsubscript{4}Mn\textsubscript{2}, and Ni\textsubscript{2}Mg\textsubscript{2}Mn\textsubscript{2}, respectively.

Thermal analysis (TG/DTA) was carried out using the TG-750 Stanton—Redcroft instrument. Heating rate of 10 K min-1, air flow rate of 10 cm3 min-1, and 20 mg of corresponding sample were used in these experiments.

The powder X-ray diffraction (XRD) patterns were recorded using XRD powder diffractometer INEL CPS 120 equipped with a curved position-sensitive detector CPS120 (120° 2θ), reflection mode with a germanium monochromator (to produce CuK\textsubscript{α2} radiation). Silicon powder was used as standard reference material for calibration of CPS detector. Samples were pressed into the flat rotation holder and examined under the same experimental conditions during 2000 s. Voltage applied was 25 kV with 15 mA current. Crystalline phases were identified from the measured XRD patterns using the ICDD-PDF database [18].

The surface area measurements were carried out by nitrogen adsorption at 77 K and evaluated by the one-point BET method. Before the measurement, the samples of prepared catalysts were activated by heating (0.5 h) at 450°C.

Catalytic Measurements

The N\textsubscript{2}O decomposition reaction was performed in fixed-bed stainless steel reactor of 5 mm i.d. in the temperature range 330—450°C. It was verified that stainless steel did not contribute to the catalyst performance at given reaction conditions. Total flow rate was maintained at 100 cm3 min-1 NTP (273 K, 101 325 Pa). The catalyst bed length was 1 cm and contained 100 mg sample of the catalyst. The space velocity (HSV) was 60 000 cm3 g-1 h-1. The inlet content of N\textsubscript{2}O was 0.1 mole % balanced by He. A temperature-controlled furnace was used for the reactor heating. Prior to each run, the catalysts were pretreated by heating in a He flow of 50 cm3 min-1 at 10°C min-1 up to 450°C and maintaining this temperature for 1 h. After the pretreatment the feed mixture was passed over the catalysts and the reaction was processed overnight. Then the conversion at 450°C was measured and the temperature was decreased to the desired level. Generally, 1 h after the change of
CATALYTIC ACTIVITY OF CALCINED Ni/Mg/Al (Mn) HYDROTALCITES

Table 1. Chemical Composition of Hydrotalcite-Like Precursors Dried at 60 °C

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ni</th>
<th>Mn</th>
<th>Mg</th>
<th>Al</th>
<th>Na</th>
<th>Mole ratio n(M(II))/n(M(III))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg₄Al₂-HTL</td>
<td>0</td>
<td>0</td>
<td>15.90</td>
<td>9.10</td>
<td>0.027</td>
<td>1.94</td>
</tr>
<tr>
<td>Ni₄Al₂-HTL</td>
<td>35.9</td>
<td>0</td>
<td>0</td>
<td>8.39</td>
<td>0.007</td>
<td>1.96</td>
</tr>
<tr>
<td>Ni₃Mg₃Al₂-HTL</td>
<td>27.0</td>
<td>0</td>
<td>3.86</td>
<td>8.43</td>
<td>0.002</td>
<td>1.98</td>
</tr>
<tr>
<td>Ni₂Mg₂Al₂-HTL</td>
<td>19.2</td>
<td>0</td>
<td>8.44</td>
<td>9.07</td>
<td>0.002</td>
<td>2.01</td>
</tr>
<tr>
<td>Ni₄Mn₂-HTL</td>
<td>33.0</td>
<td>16.11</td>
<td>0</td>
<td>0</td>
<td>0.007</td>
<td>1.92</td>
</tr>
<tr>
<td>Ni₂Mg₂Mn₂-HTL</td>
<td>19.5</td>
<td>16.58</td>
<td>7.12</td>
<td>0</td>
<td>0.140</td>
<td>2.07</td>
</tr>
<tr>
<td>Mg₄Mn₂-HTL</td>
<td>0</td>
<td>22.00</td>
<td>19.42</td>
<td>0</td>
<td>0.378</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Table 2. Properties of Prepared Hydrotalcite-Like Precursors and Catalysts Used for N₂O Decomposition

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dehydration temperature °C</th>
<th>Decomposition temperature °C</th>
<th>S_BET* m² g⁻¹</th>
<th>N₂O conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₄Al₂-HTL</td>
<td>120</td>
<td>360</td>
<td>190</td>
<td>79</td>
</tr>
<tr>
<td>Ni₃Mg₃Al₂-HTL</td>
<td>130</td>
<td>390</td>
<td>209</td>
<td>36</td>
</tr>
<tr>
<td>Ni₂Mg₂Al₂-HTL</td>
<td>140</td>
<td>390</td>
<td>245</td>
<td>29</td>
</tr>
<tr>
<td>Mg₄Al₂-HTL</td>
<td>215</td>
<td>400</td>
<td>298</td>
<td>1</td>
</tr>
<tr>
<td>Ni₄Mn₂-HTL</td>
<td>160</td>
<td>245</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>Ni₂Mg₂Mn₂-HTL</td>
<td>165</td>
<td>270</td>
<td>86</td>
<td>8</td>
</tr>
<tr>
<td>Mg₄Mn₂-HTL</td>
<td>160</td>
<td>295</td>
<td>142</td>
<td>39</td>
</tr>
</tbody>
</table>

*Specific surface area of extrudates calcined at 450 °C. Reaction conditions: 0.1 mole % N₂O in He, m = 0.1 g, flow rate 100 cm³ min⁻¹.

conditions the N₂O conversion level was constant and considered as the steady state. At least three analyses were averaged for a data point.

The gas chromatograph Hewlett—Packard (model 5890, series II GC) equipped with gas sample loop preceding the split/splitless injector system and electron capture detector was used to analyze the nitrous oxide content in the reactor off-gas. Data were acquired with HP Chemstation. The chromatographic column used was PoraPlot Q (30 m × 0.53 mm × 40 μm). Detection was carried out by an electron capture detector in overheating mode. The 2-point calibration with calibration gases (0.007 mole %, 0.1 mole %) was performed before and after each experimental run.

Application of the experimental tests and the criteria to check the presence of mass and heat transport limitations in the reactor revealed that these restraints were absent [19].

RESULTS AND DISCUSSION

Catalysts Characterization

The results of elemental chemical analysis of the dried hydrotalcite-like precursors are presented in Table 1. The data confirmed the n(M(II))/n(M(III)) mole ratio to be close to the intended value of 2. The prepared precursors contained a small amount of Na cations remaining in the coprecipitated products. Higher Na contents in the Ni₂Mg₂Mn₂-HTL and Mg₄Mn₂-HTL samples were caused probably due to the insufficient washing.

Two endothermic effects characteristic of hydrotalcite-like compounds can be observed on the DTA curves of all prepared precursors (see Fig. 1). The first one indicated sample dehydration was accompanied by the loss of interlayer water. The second DTA endothermic effect was accounted to the dehydroxylation of hydroxide layers and decomposition of the interlayer carbonate anions. Both dehydration and decomposition temperatures evaluated from DTA measurements are summarized in Table 2.

The highest thermal stability was exhibited by the Mg₄Al₂-HTL sample, which dehydrated and decomposed at ca. 215 °C and 400 °C, respectively. A substitution of Mg²⁺ and Al³⁺ cations by transition metal cations (Ni²⁺ and/or Mn³⁺) caused a decrease of thermal stability of the precursors. Both dehydration and decomposition temperatures decreased with increasing content of transition metal cations in the hydroxide layers. The substitution of Mg²⁺ cations in Mg—Al hydrotalcite by Ni²⁺ cations decreased especially the dehydration temperature. The interlayer water was probably released gradually in a relatively wide temperature interval because the corresponding DTA peak was rather broad. The second endothermic effect was more distinct.

A gradual decrease of thermal stability with increasing Ni²⁺ content can be observed in Fig. 1. The substitution of Al³⁺ by Mn³⁺ cations decreased con-
Fig. 1. DTA curves of prepared hydrotalcite-like compounds.

considerably both dehydration and decomposition temperatures of the samples. The lowest thermal stability was exhibited by the Ni₄Mn₂-HTL sample in which all Mg²⁺ and Al³⁺ cations were substituted by Ni²⁺ and Mn³⁺ cations. A slight endothermic effect at high temperatures (> 700°C) was detected on DTA curves of Mg₄Mn₂ catalyst (Fig. 2d). The NiO (bunsenite) was identified in the Ni₄Al₂ catalyst (Fig. 2e). The XRD pattern of Ni₂Mg₂Al₂ catalyst (Fig. 2f) exhibited also broad and low-intensive diffractions, which could be attributed to the overlapping MgO and/or NiO diffraction lines. The XRD patterns of calcined Ni—(Mg)—Mn samples are in Fig. 3d—f. The Mg₆MnO₈ with murdochite structure was detected in Mg₄Mn₂ catalyst (Fig. 3d). The calcination of Ni₄Mn₂ catalyst was reported in more detail elsewhere [21]. The diffraction lines of the Ni₄Mn₂ catalyst (Fig. 3e) correspond to the Ni₆MnO₈ (murdochite structure). The Ni₂Mg₂Mn₂ catalyst produced in the XRD pattern (Fig. 3f) broad diffraction lines corresponding to the (Ni, Mg)₆MnO₈ structure and it is in agreement with the (Ni, Mg, Mn(IV)) mixed oxide with disordered murdochite structure detected in this sample earlier [21].

Substituting Mg²⁺ for Ni²⁺ and/or Al³⁺ for Mn³⁺ in Mg₄Al₂ catalyst results in decreasing catalytic activity in the order: Ni₄Al₂ > Mg₄Mn₂ > Ni₄Mn₂ > Mg₄Al₂ (Fig. 4). Activity of Mg₄Al₂ catalyst is very low (1 % N₂O conversion) as it was well documented in literature previously [8, 22]. The Ni₄Al₂ catalyst was prepared from Mg₄Al₂ by substitution of Mg²⁺ for Ni²⁺. The sharp increase of N₂O conversion (79 %) was shown over this catalyst. However, the substitution of Al³⁺ for Mn³⁺ in Mg₄Al₂ catalyst caused only 39 % N₂O conversion. The further decrease of catalytic performance (8 % N₂O conversion) was observed over Mg₄Mn₂ catalyst. This sample was prepared from Mg₄Al₂ by substitution of Mg²⁺ for Ni²⁺. The sharp increase of N₂O conversion (79 %) was shown over this catalyst. However, the substitution of Al³⁺ for Mn³⁺ in Mg₄Al₂ catalyst caused only 39 % N₂O conversion. The further decrease of catalytic performance (8 % N₂O conversion) was observed over Mg₄Mn₂ catalyst. This sample was prepared from Mg₄Al₂ by substitution of Mg²⁺ and Al³⁺ for Ni²⁺ and Mn³⁺, respectively. From these results it followed that catalysts containing both transition metals (Ni and Mn) were relatively inactive although catalysts containing only one of these transition metals were active.

The differences of catalytic activities could be explained by the dissimilar surface area found for Ni₄Mn₂ catalyst in comparison with Ni₄Al₂ one. The Ni₄Al₂ catalyst showed surface area two to three times larger than Ni₄Mn₂ catalyst (see Table 1). The different catalysts surface area was probably connected with lower thermal stability of the NiMn-HTL precursor in comparison with NiAl-HTL as it was determined from DTA analysis. The dried hydrotalcite-like com-
pounds showed relatively low surface areas. A sharp increase of the surface area is observed during thermal decomposition of hydrotalcite-like compounds. With increasing calcination temperature the surface area was increasing until it achieved its maximum size. However, further increase of calcination temperature caused the decrease of surface area. It was found [23] that hydrotalcite-like compounds calcined at temperatures close to the decomposition temperatures exhibiting a maximum value of surface area, which decreases with further increase of calcination temperature. The thermal decomposition of Ni4Mn2-HTL sample took place at lower temperatures than that of Ni4Al2-HTL one (Table 2). The difference between decomposition temperature and temperature used for calcination of precursors resulted in lower surface area and lower catalytic activity of Ni4Mn2 sample compared to Ni4Al2 one. The other possible explanation may be supposed, based on the lower capability of catalysts structure to give and accept electrons. As it is implied from previously reported studies [4, 6], N₂O catalytic decomposition proceeds by oxidation-reduction mecha-
Substituting Ni\(^{2+}\) for Mg\(^{2+}\) in Ni\(_2\)Al\(_2\) catalyst results in decreasing catalytic activity in the order: Ni\(_4\)Al\(_2\) > Ni\(_3\)MgAl\(_2\) > Ni\(_2\)Mg\(_2\)Al\(_2\) > Mg\(_4\)Al\(_2\) (Fig. 5). The substitution of Ni\(^{2+}\) for Mg\(^{2+}\) in Ni\(_2\)Mn\(_2\) catalyst results in decreasing catalytic activity in the order: Mg\(_4\)Mn\(_2\) > Ni\(_2\)Mg\(_2\)Mn\(_2\) > Ni\(_4\)Mn\(_2\) > Mg\(_4\)Al\(_2\) (Table 2). From these results it is indicated that the \(\text{N}_2\text{O}\) conversions decrease with increasing content of magnesium in the Ni—Al system and increase in the Ni—Mn system. Only the substitution of Ni\(^{2+}\) for Mg\(^{2+}\) in Ni\(_4\)Mn\(_2\) catalyst (Ni\(_2\)Mg\(_2\)Mn\(_2\) sample) had almost no effect on the activity of catalyst in experimental conditions studied. The conversions over Ni\(_4\)Mn\(_2\) and Ni\(_2\)Mg\(_2\)Mn\(_2\) catalysts were low and comparable. The surface area increases with increasing \(n(\text{Mg})/n(\text{Al})\)

Fig. 3. X-Ray powder diffraction patterns of prepared hydrotalcite-like (HTL) samples: a) Mg\(_4\)Mn\(_2\)-HTL, b) Ni\(_4\)Mn\(_2\)-HTL, c) Ni\(_2\)Mg\(_2\)Mn\(_2\)-HTL; and the patterns after their calcination at 450 °C: d) Mg\(_4\)Mn\(_2\), e) Ni\(_4\)Mn\(_2\), f) Ni\(_2\)Mg\(_2\)Mn\(_2\).
and \(n(\text{Mg})/n(\text{Mn}) \) ratios in agreement with the results published in [12, 25]. The highest value (298 m\(^2\) g\(^{-1}\)) was determined for MgAl2 catalyst (Table 2).

The influence of Mg upon catalytic activity observed could be interpreted by the compensation of the following opposite effects: i) The substitution of Ni for Mg in Ni—(Mg)—Al samples led to the decrease of catalytic activity. Ni was a component responsible for the catalytic activity and its replacement by Mg decreased the number of active sites. ii) The presence of Mg increased the thermal stability and surface area, resulting in larger number of exposure surface sites.

The comparison of \(\text{N}_2\text{O} \) conversion for all samples at temperature 450°C, inlet content 0.1 mole % \(\text{N}_2\text{O} \) in He, and WHSV = 60 000 cm\(^3\) g\(^{-1}\) h\(^{-1}\) is shown in Table 2. The best result was obtained over Ni4Al2 sample, which exhibits 79 % conversion at 450°C. Activity of Ni4Al2 is comparable to state-of-the-art catalysts, Fe-zeolites, reported by Pérez-Ramirez et al. [24]: 75—88 % conversion at 450°C; 1500 ppm \(\text{N}_2\text{O} \) in He, GHSV = 60 000 h\(^{-1}\). However, the activity of Ni4Al2 is not stable and it was decreased during our time on stream experiments (460 h). The catalytic activity observed for Mg4Mn2 catalyst (39 % \(\text{N}_2\text{O} \) conversion) was stable during the time on stream measurements. Based on these results we can conclude that the activity of Ni4Al2 catalyst is high and decreasing in time and the activity of Mg4Mn2 is lower but without deactivation observed. Selection of suitable catalyst is almost a compromise between high activity and stability of catalyst. Further experiments will be provided in order to increase catalytic activity of the Mg4Mn2 system and to verify its behaviour in industrial conditions in the presence of \(\text{O}_2, \text{NO}_x, \text{and H}_2\text{O} \).

Acknowledgements. This work was supported by the Grant Agency of the Czech Republic (Grant No. 106/02/0523) and by the Czech Ministry of Education, Youth, and Sports (Research Project No. CEZ: MSM 223/10/0002). Authors also thank M. Markvart from the Institute of Inorganic Chemistry of CAS for helpful discussion.

REFERENCES